Search results for "Low-barrier hydrogen bond"

showing 7 items of 7 documents

DFT study of N–H···O hydrogen bond between model dehydropeptides and water molecule

2013

The strength of the hydrogen bond formed between a water molecule and two α,β-dehydroalanine derivatives including Ac-ΔAla-NMe2 (1) and Ac-ΔAla-NHMe (2) in comparison with standard amino acid Ac-Ala-NMe2 (3) is studied by density functional theory (with M06-2X and B3LYP functionals). Calculations were conducted for two different conformations of the peptides: extended (C5) and bent (β) with polyproline II backbone dihedral angles. The obtained results show that both dehydro and standard peptides in bent conformation form stronger hydrogen bonds with water than in the extended ones. Moreover, due to higher polarity of the N–H group of α,β-dehydroalanine residues, the H-bond in their complexe…

Alaninehydrogen bondB3LYPHydrogen bondStereochemistryChemistryBent molecular geometryLow-barrier hydrogen bonddehydroamino acidsBiophysicsDihedral angleCondensed Matter PhysicsDFTM06-2XMoleculeDensity functional theoryPhysical and Theoretical ChemistryMolecular BiologyPolyproline helixMolecular Physics
researchProduct

Hydrogen bonding in dimers of tritolyl and tritosylurea derivatives of triphenylmethanes.

2006

The crystal structure of the homodimer formed by the tritolylurea 3a proves the existence of a belt of six bifurcated hydrogen bonds between both NH and the O=C groups of the adjacent urea residues. For the tritosylurea 3b, four additional three-center hydrogen bonds, also involving the SO2 oxygen, are found in the crystalline state. Molecular dynamics simulations in a chloroform box confirm these patterns of the hydrogen bonds and the resulting elongation of the dimer 3b. 3b in comparison to 3a x 3a. The calculated complexation energies for the three dimeric combinations are nearly identical in agreement with the simultaneous formation of heterodimer 3a x 3b in a mixture of 3a and 3b.

Models MolecularMagnetic Resonance SpectroscopyDimerLow-barrier hydrogen bondMolecular Conformationchemistry.chemical_elementCrystal structurePhotochemistryCrystallography X-RayBiochemistryOxygenchemistry.chemical_compoundMolecular dynamicsUreaComputer SimulationPhysical and Theoretical ChemistryChloroformHydrogen bondOrganic ChemistryHydrogen BondingTrityl CompoundsCrystallographychemistryUreaThermodynamicsDimerizationOrganicbiomolecular chemistry
researchProduct

The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution

2016

Journal of the American Chemical Society 138(51), 16620 - 16631 (2016). doi:10.1021/jacs.6b05609

Models Molecularphotoactive yellow proteinlow-barrier hydrogen bondVacuumHydrogenProtein ConformationLow-barrier hydrogen bondNeutron diffractionchemistry.chemical_elementProtonationCrystallography X-RayPhotoreceptors Microbial010402 general chemistry01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistryProtein structureBacterial Proteins0103 physical sciencesta116Photoactive yellow proteinvetysidokset010304 chemical physicsHydrogen bondChemistryHydrogen BondingGeneral Chemistry5400104 chemical sciencesSolutionsCrystallographyhydrogen bondsddc:540Proton NMRArtifactsJournal of the American Chemical Society
researchProduct

The ins and outs of proton complexation

2009

Proton complexation differs from simple protonation by the fact that the coordinated hydrogen atom is bound intramolecularly to more than one donor atom. This is usually achieved by covalent bonding supplemented by hydrogen bonding. In a few cases, however, the complexed proton is hydrogen-bound to all donor atoms, which gives rise to single well (SWHB) and low barrier (LBHB) hydrogen bonds. This tutorial review highlights a full range of proton complexes formed with chelating and "proton-sponge"-type ligands, cryptand-like macropolycycles, and molecules of topological relevance, such as rotaxanes and catenanes. The concept of proton complexation can explain how the smallest cation possible…

ProtonStereochemistryLow-barrier hydrogen bondreviewProtonation010402 general chemistry01 natural sciencescovalent bonding[ CHIM.ORGA ] Chemical Sciences/Organic chemistryMoleculePhysics::Atomic PhysicsPhysics::Chemical Physicsproton complexationNuclear ExperimentComputingMilieux_MISCELLANEOUSQuantitative Biology::Biomolecules[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryChemistryHydrogen bondGeneral ChemistryHydrogen atomhydrogen bonding3. Good health0104 chemical sciencesCrystallographyCovalent bondIntramolecular forceChemical Society Reviews
researchProduct

ChemInform Abstract: The Ins and Outs of Proton Complexation

2009

Proton complexation differs from simple protonation by the fact that the coordinated hydrogen atom is bound intramolecularly to more than one donor atom. This is usually achieved by covalent bonding supplemented by hydrogen bonding. In a few cases, however, the complexed proton is hydrogen-bound to all donor atoms, which gives rise to single well (SWHB) and low barrier (LBHB) hydrogen bonds. This tutorial review highlights a full range of proton complexes formed with chelating and “proton-sponge”-type ligands, cryptand-like macropolycycles, and molecules of topological relevance, such as rotaxanes and catenanes. The concept of proton complexation can explain how the smallest cation possible…

Quantitative Biology::BiomoleculesProtonHydrogen bondChemistryLow-barrier hydrogen bondProtonationGeneral MedicineHydrogen atomCrystallographyCovalent bondIntramolecular forceMoleculePhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear ExperimentChemInform
researchProduct

Solid State Structures of Amide-Substituted 8-Hydroxyquinoline Derivatives

2000

Abstract The amide substituted 8-hydroxyquinoline derivatives 3 and 4 form, in the solid state, hydrogen bonded polymers. Polymeric 3 adopts a helical conformation while 4 forms a double-stranded ladder-type structure.

chemistry.chemical_classificationHydrogenHydrogen bondOrganic ChemistryLow-barrier hydrogen bondSolid-statechemistry.chemical_element8-HydroxyquinolinePolymerBiochemistrySolid state structurechemistry.chemical_compoundchemistryAmideDrug DiscoveryPolymer chemistryOrganic chemistryTetrahedron
researchProduct

Non-covalent interactions of N-phenyl-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide derivatives—a case of intramolecular N-oxide hydrogen bonds

2017

The crystal structures of new N-phenyl-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide derivatives are reported. The results of X-ray diffraction showed the existence of intramolecular hydrogen bonding between carboxamide nitrogen donors and N-oxide oxygen acceptors. The use of Quantum Theory of Atoms in Molecules allowed its classification as a strong interaction, with energy about 10 kcal/mol, and of intermediate character between closed shell and shared bonds. Comparison of experimental data and quantum theoretical calculations indicated that a substituent attached to the phenyl ring in the para position influences the strength and geometry of the title hydrogen bonding. Stronger π-elect…

medicine.drug_classLow-barrier hydrogen bondintramolecular hydrogen bondSubstituentCarboxamideN-oxide group010402 general chemistry01 natural scienceschemistry.chemical_compoundComputational chemistrymedicineNon-covalent interactionsHirshfeld surface analysisPhysical and Theoretical Chemistrychemistry.chemical_classification010405 organic chemistryHydrogen bondIntermolecular forceAtoms in moleculesCondensed Matter Physicshydrogen bonding0104 chemical sciencesCrystallographychemistryQTAIMIntramolecular forcesubstituent effectStructural Chemistry
researchProduct